RECURSION PROGRAMMING EXERCISES

For each of these exercises, write a recursive method that calculates the described result and a test wrapper that you can use to compile and test your method.

1. The method must adhere to this specification:

```
public String formatDec( long x )
// Return the given long as a string with comma separators
```

For example, the long value 1234567890 is returned as the string 1,234,567,890.

```
Recurrence relation defining formatDec(x)
```

Initial Condition, applies to x < 1000:

```
formatDec( x ) = String.valueOf( x )
```

Recursive Clause, applies to x 1000:

```
formatDec(x) = formatDec(x \div 1,000) + "," + String.valueOf(x \% 1,000)
```

Refer to the Java API specification for java.lang.String for an explanation of the valueOf method.

2. The following table shows how a Certificate of Deposit grows in value each period of investment. The table assumes the CD starts with \$1,000, the APR (annual percentage rate) is 5% and the CD's interest is compounded monthly (i.e. the period is 1 month).

Month	CD Balance (before)	Multiplied By	Interest	CD Balance (after)
1	\$1,000.00	5/100/12	\$4.17	\$1,004.17
2	1,004.17	5/100/12	4.18	1,008.35
3	1,008.35	5/100/12	4.20	1,012.55
4	1,012.55	5/100/12	4.22	1,016.77
5	1,016.77	5/100/12	4.24	1,021.01

As shown in the table, interest "compounding" is accomplished by applying the interest rate to the total of the deposits plus interest.

Recurrence relation defining CD(n) = the value of the CD after n periods

Initial Condition:

$$CD(0) = initial deposit$$

Recursive Clause:

$$CD(n) = (1 + period rate) \times CD(n-1)$$

initial deposit is \$1,000 in the example above.

<u>period rate</u> = APR \div 100 \div <u>number of periods per year</u>. The example above has a monthly compounding period so the number of periods per year is 12 and the <u>period rate</u> is 5/100/12.

Your method must adhere to this specification:

```
public double cd( int n, double d, double apr, int period )
// Return the value of a CD after n periods.
// d = initial deposit,
// apr = annual percentage rate
// period = number of periods per year
```

3. The method must adhere to this specification:

```
public String reverse( String s )
// Return the reverse of the given string.
```

```
Recurrence relation defining reverse( s )
```

Initial Condition:

```
reverse (\underline{null string}) = \underline{null string}
```

Recursive Clause:

```
reverse(s) = reverse(s.substring(1)) + s.charAt(0)
```

Refer to the Java API specification for java.lang.String for explanations of the charAt and substring methods.